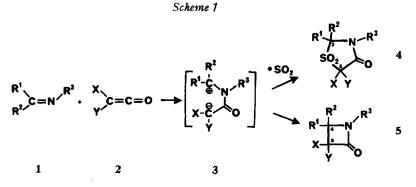
271. Incorporation of Sulfur Dioxide into the Products of Reaction of Schiff Bases with Halo- or Alkylthio-ketenes in Liquid SO₂¹

Preliminary Communication

by Daniel Belluš


Ciba-Geigy AG, Central Research Laboratories, CH-4002 Basel

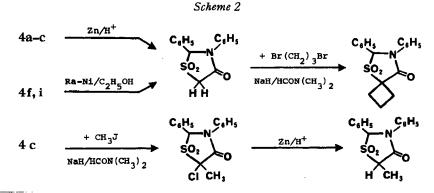
(14. X. 75)

Summary. A simple 'three-component-reaction' between halo- or alkylthio-ketenes, Schiff bases and sulfur dioxide, yielding 4-oxo-1, 3-thiazolidine-1, 1-dioxides 4 in one step, is presented.

In 1967, Joullie & Gomez [2] used sulfur dioxide as solvent in their study of the reactions of ketene (2, X = Y = H) with imines 1 to obtain azetidin-2-ones 5. They found, however, that SO₂ participates in the reaction as an active species to give 4-oxo-1, 3-thiazolidine-1, 1-dioxides 4 (X = Y = H) in good yields²). This elegant one-step synthesis of 4 suffers from one serious limitation, in that both *in substance* used dialkylketenes [4] as well as alkylketenes generated *in situ* from acid chlorides [5] failed to yield any SO₂-insertion products 4. During our systematic search we have found so far that only the halo- and some alkylthio-ketenes can enter this reaction. As a common feature, these *in situ* generated ketenes all bear α -carbanion-stabilizing substituents [6]³).

This communication describes the facile syntheses of 4, where at least one of the substituents X or Y is halogen (Cl or Br) or alkylthio, and their simple and mild transformation to such derivatives of 4, where one or both of X and Y are hydrogen atoms or alkyl groups. The latter compounds are – as was mentioned above – inaccessible by direct synthesis in liquid SO₂. For direct comparison of yields, the products of reactions with the same *Schiff* base, benzylideneaniline, are shown in the Table.

- 1) Synthesis and Reactivity of Compounds with Cyclobutane Ring(-s). Part VI. For Part V see [1].
- ²) Since that original report, various kinds of SO₂-participations in the cycloadditions of ketenes across the C-N double bonds have been reported [3].
- ³⁾ However, no 4 were formed with difluorketene or with ketenes bearing α -substituents with -M effect (cyanoketene, ethoxycarbonylketene) [5].


	Ketene 2 X Y		Product yield, % ^a) 4 5		M.p., °C 4 5		
a	Cl	Cl	81		129-130		
b	Br	Br	67	-	137-138	-	
С	C1	н	65	_	127-129	-	
đ	Cl	n-C4H9	23	34	133-134	115-116	
е	C1	C ₆ H ₅	14	6 7	184-185	118-119	
f	$-S(CH_2)_2S-$		3	75	183–184	203-204	
g	$-S(CH_2)_3S-$			69	-	175-176	
h	SC_2H_5	SC ₂ H ₅	-	73	_	108-109	
i	SCH3	н	12	37	150-153	143-144 b); 114 c)	

2,3-Diphenyl-4-oxo-tetrahydro-1,3-thiazol-1,1-dioxides 4 and 1,4-Diphenyl-azetidin-2-ones 5 obtained from Reaction of Haloketenes 2a-e or Thioalkylketenes 2f-1 with Benzylideneaniline 1 (R¹ = R³ = C₆H₅, R² = H) in Liquid Sulfur Dioxide

^a) Isolated products. ^b) 3H,4H-cis-isomer; J_{3,4 cts} = 5.7 Hz. ^c) 3H,4H-trans-isomer; J_{3,4 trans} = 2.3 Hz. For coupling constants in azetidin-2-ones, see [7].

In a typical experiment, benzylideneaniline (0.1 mol) and triethylamine (0.11 mol) were dissolved in 100 ml anhydrous SO_2 at -70° . A solution of the α -halo-⁴) or α -alkylthio-acid chloride⁵) in dry CH₂Cl₂ was then added dropwise. After 30 min at -70° and 30 min under SO₂-reflux, excess SO₂ was evaporated, the CH₂Cl₂-solution was extracted with ice-cold water, dried over MgSO₄ and concentrated. The residue was purified either by recrystallisation or by chromatography on silica gel.

Cycloadducts 4 and 5 were identified by spectral and chemical means. The IR. spectra of 4 exhibit strong absorption bands at 1685–1710 cm⁻¹ (5-ring lactam), and at 1305–1350 and 1120–1140 cm⁻¹ (sulfone). 5 show in IR. (CHCl₃) a typical β -lactam

⁴⁾ Acid chlorides for generating 2a-c, e are commercially available or described. 2-Chlorohexanoyl chloride (for 2d) was prepared by chlorination of hexanoylchloride with SO₂Cl₂ (18 h, 70°) in the presence of iodine. Bp. 84-85°/45 Torr; 52% yield.

⁵⁾ 2-Chloroformyl-1, 3-dithiolane, b.p. 56-58°/0.015 Torr (for 2f); 2-chloroformyl-1, 3-dithiane [6], b.p. 65-69°/0.01 Torr, m.p. 46-47° (for 2g) and di(ethylthio)acetylchloride, b.p. 81-84°/0.2 Torr (for 2h) were prepared by treatment of the corresponding acids with oxalyl chloride. The acids were conveniently obtained by alkaline hydrolysis of their ethyl esters, which are commercialy available (*Fluka AG*). Overall yields were 67-86%. (Methylthio)acetyl chloride, b.p. 44-46°/12 Torr, was prepared by treatment of (methylthio)acetic acid [8] with oxalyl chloride.

carbonyl absorption at 1748–1780 cm⁻¹. In NMR. (CDCl₃), 4 and 5 are well characterized by the low-field singlets of H–C(2) in 4 ($\delta = 6.25 \pm 0.25$ ppm) and H–C(4) in 5 ($\delta = 5.1 \pm 0.3$ ppm).

4, halogenated in position 5, are quantitatively dehalogenated on brief treatment with zink in acetic acid or in an ethanol/ether/NH₄Cl system; e.g. $4a-c \rightarrow 6$ and $8 \rightarrow 9$. Similarly, the desulfurization of 4f and 4i by *Raney*-Nickel in ethanol affords the known [4] compound 6.

6 is readily dialkylated in position 5, as illustrated for the formation of the spirocompound 7 (mp. 137–138°). Attempts to monoalkylate 6 led only to a mixture of mono- and di-alkylated products. However, monoalkylation of 4c by alkyliodides, followed by reductive dehalogenation yields pure monoalkylderivatives in good yields, as shown for $4c \rightarrow 8$ (two diastereoisomers with m.p. 148–149° and 138–139°, resp.) and $8 \rightarrow 9$ (glassy solid). We suggest that the above methods may be convenient general synthetic routes to halogen-free 4-oxo-1, 3-thiazolidine-1, 1-dioxides such as 6, 7 and 9. In the special case of 6, its synthesis *via* 4a allows one to avoid the handling of gaseous ketene.

Compounds 4 are thermally unstable above their m.p.-temperatures. For example 4a loses SO₂ quantitatively in the melt at 150° in 5 min to give 5a (R¹ = R³ = C₆H₅; R² = H; X = Y = Cl). In solution, the rate of SO₂-extrusion from 4a is solvent-dependent: at 95°, $t^{1/2} = 16$ min in nitromethane, whereas in toluene $t^{1/2} = 6$ h. In the presence of a large molar excess of water in CH₃NO₂, benzaldehyde and N-phenyl-dichloracetanilide were formed up to a maximum of 35% yield, thus indicating that the ring contraction $4 \rightarrow 5$ proceeds, at least in part, through the 1,4-dipolar intermediate 3. In separate control experiment *no* benzaldehyde and N-phenyl-dichloracetanilide were formed from 5a in nitromethane/water solution at 95°.

Further examples of application of the above reactions which will provide more insight into their scope will be presented in a forthcoming full paper in this journal.

I would like to thank Dr. H. Sauter for his help in the NMR. problems.

REFERENCES

- [1] D. Belluš, H.-C. Mez, G. Rihs & H. Sauter, J. Amer. chem. Soc. 96, 5007 (1974).
- [2] A. Gomes & M. M. Joullié, Chem. Commun. 1967, 935.
- [3] W. T. Brady & E. D. Dorsey, J. org. Chemistry 35, 2732 (1970); J. M. Bohen & M. M. Joullié, Tetrahedron Letters 1971, 1815; J. M. Decazes, J. L. Luche & H. B. Kagan, Tetrahedron Letters 1972, 3633; J. M. Bohen & M. M. Joullié, J. org. Chemistry 38, 2653 (1973).
- [4] A. Gomes & M. M. Joullie, J. heterocycl. Chemistry 6, 729 (1969).
- [5] Our unpublished results.
- [6] E. Cossement, R. Binamé & L. Ghosez, Tetrahedron Letters 1974, 997.
- [7] P. V. Demarco & R. Nagarajan in 'Cephalosporins and Penicilins', Chapter 8, Ed. E. H. Flynn, Academic Press, New York 1972.
- [8] E. Larsson, Ber. deutsch. chem. Ges. 63, 1347 (1930).